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symmetry the wave profile (curve 1) differs from the plot showing the dependence of the pressure 
at the piston on time (curve 2) by 15-20?+1 on average. The law governing the drop in p;essure 
in a cavity differs considerably in the axisynnnetric case from the exponential relation (4.5). 
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DIFFRACTION OF A SINGLE PLANE WAVE BY A V-SHAPED WI#G* 

P.V. TRET'YAKOV 

A linear formulation is used to solve the problem of the diffraction of 
a single plane wave by a V-shaped wing moving at supersonic speed. The 
solution is based on the study of the eigenfunctions for a class of 
selfsimilar solutions of the three-dimensional wave equation. The boundary 
integral is constructed using a method analogous to that discussed in /l/, 
and results obtained in /l-3/ are used. 

1. We shall seek a solution of the wave equation 

(1.1) 

for the homogeneous functions of zero dimensions in t and q = (rzi_ y? 7 z*)'/*. 
It was shown in il./ that knowing the homogeneous solution of zero dimensions and using 

the relation 

we can obtain a uniform solution of dimensions nE fi. Here @,, and a+, are solutions of 
(1.1) uniform in t and g, of dimensions zero and n respectively. 

We have the foilowing representation for the uniform solution Q, of zero dimensions in 
the form of a series in eigenfunctions: 

OE 

.z (A,,,rcosk%~~~,,ksinkhO)G,,k(~~Ql.+kr.(P)] 

k=l 

G!z’k = CF:*',* (cos~+)sin" q 

-4 11, I: 
&, k I = 

2n! (n + kh + l/r) r (k). + ‘id r (24. + 1) x 

T rr,l- (n + 2kl+ 1) P (kl -r 1) 
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Here 9 and (r are spherical angular coordinates, Cnv(cosq) are the Gegenbauer polynomials, 

Qu (P) is the Legendre function of second kind, r(z) is the gamma function aa T is the period 
of the solution in 8. 

Summing the series obtained over n (see /2/) and taking into account the relation 

we obtain 

(I .1’) 

This boundary integral is identical, when 7 = 5 and T = h, with the boundary integrals 

obtained earlier /l, 4/. 

2. Using the integral bobtained, we shall solve the problem of diffraction of a single 
plane wave by a v-shaped wing moving with constant supersonic velocity (with supersonic edges). 

Let the V-shaped wing with sweepback angle at the tip of n! 2 --f and V-shaped angle 
n - zp (Fig.1) move symmetricallyinthe negative z direction of a Cartesian coordinate 
system with constant supersonic velocity (.I[> 1). The y axis lies in the plane of symmetry 
of the wing. We choose the angular spherical coordinates as follows: 

e=arrtg+, y=arrtgF. 

Let a single plane wave impingeon the wing (H(r) is the Heaviside function) 

Q = EJ (! - 9 co-c q cos c - 9 sin v sin 0 sin cx). * = cons!. 

Fig.2 shows the diffraction pattern. The flow will be three-dimensional only within the 
diffracted sphere with centre at the point 0, in the remaining regions the solution can be 
obtained with help of the equations describing plane motion. 

In the regions AECQ. dE’BQ’. C.\.G.\JH. B.\‘G.IJ’H’ and .1’.lJG.lJ’T and within the cones with 
apices at the points A. B. C (henceforth we si-- ,a.11 denote the cones with apices at the 
corresponding points by those letters, e.g. cone XI the solution is obtained in the sar,ie 
manner as 1n /1/ 

0) = 2 (T.YG.lIIJ. B.YG.lJ’JI’I. @ = 3 (.Y.1JG.lJ’T) 

To ensure that the solution within the cones depends on three variables (rI.yl. T) only 
and diffraction pattern within the cones reduces to the form shown in Fig.3, we must carry 
out the following coordinate transformation: 

where the upper and lower signs correspond to cones B and C. 
For cone A we have 

(2.1) 
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Fig.1 

Fig.2 Fig.3 

Moreover, to reduce the diffraction pattern in this cone to the form shown in Fig.3, we 
must carry out the conformal transformation 

RL exp (Xl,) = R,L exp (ii. (0, - 6)) 

The boundary conditions at the cone surfaces md the angles separating various boundary 
condlticns (Pig.3) will be as follows: 

0 ej -r XgcD = 1 - 

8, .‘I no = 2 

L.’ xi,<e,<rl-E~@=l, zl-EEg ; 

(B) 

where the letters in parenthesis denote the corresponding cones. We have the condition of 

impermeability dQ, iru = 0 at.the wing surface for all cases. In the new coordinates this 

condition becomes @-I' O!/I !g:=o = 0. and we can therefore continue symmetrically onto the half- 
plane y,<O the boundary conditions for each cone and use Poisson's integral. Since the 

solution is obtained in the same manner for all oases, we give here the solution for cone C 

only 
CD = 1 - 2 CL - elj - z (x 7 8,) - L [Z (X - e - 6,) - Z(n - e - e,)] 
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1-t RI 
Z(T)=+rctg(otg~), asi-. Rl 

To solve the problem of diffraction of a plane wave impinging on the edge of a two-sided 
angle formed by the wing planes (the edge of the wing) , we shall use the method proposed in 

/3/. To find the solution inside the diffraction surface of the incident wave, we must evalu- 
ate the following integral: 

Here F(cos(li) = F(1, r, 2, cos$) is the solution behind the incident wave and COB 9 = l'la 

(I@ + u-I'~), 9 is the polar angle of the cylindrical coordinate systeminwhich the integration 
is carried out. 

Remembering that there is no reflected wave in the real diffraction problem, we obtain 
the complete solution inside the diffraction surface by evaluating integral (2.2) for the 
reflected wave and summing the results obtained. As a result we find that the solution inside 
the cone N (Fig-Z) will be 

0 = 3 $ y- $ 'I'- 

‘i” _ - --$arc tg 
2R' co~i.(x:?-13) 5 (1 -L Rzi)cosi..x 

-7 
sini.n(l- P) 

Let us denote the solutions inside the cones A.B. C and N respectively by 

a, = 1 - 0.4, Q, = 1 -@s. Q, = 1 -; cbc, 0 = 2 +q$ 

We note that there are regions in which the cones intersect. The solution in these 
regions will not be a simple sum of the solutions inside the intersecting cones (provided 
that the solution constructed is continuous at the boundary of these regions). 

Thus in the region of intersection of the cones A and C (region PQED in Fig.2) and of 
the cones A and B (region P'Q'E'D' in Fig.2)) we have 

0 = 1 - mn -- O)c - L (PQED). 

0 = 1 -. D.4 - @B - I, (P’Q’E’D’) . 

In the region of intersection of cones B, C but outside the cone ij(regicn IKTGK’; the 
detailed form of this and the foliowing regions is given in Fig.4) we obtain 

u, =l- OB- @c 

In the region of intersection of cones B,C and .I' (S’K’KSH’T) we find Q, = O'e D’c- ON 

Fig.4 Fig.5 

Inside the regions HLK’TU’ (Fig.5) and H’L’KTM. (this region is symmetrical with 
respect to HLK’TIV about the plane y&) where the cone Ii intersects one of the cones B or 
C, the solution is 

@ =ii@a +&,cP =t -c @c + (ON 

In the regions situated inside one of the cones C and B behind the reflected plane wave 
but outside the other cone and also outside the cone N (region GTK’M in Fig.5 and region 
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GTKM symmetrical with respect to the previous region relative to the plane yOz). the 
respective solutions will be 

@ = 2 + as (GTKM'), '3 = 2 + (DC (GTK'M). 
Fig.4 shows that a region exists in which the conical waves B and C are diffracted at 

the wing edge (cone N) and regions (WS'R'V' and WSRV) where these waves are reflected 
from the wing surface. Henceforth, we shall call the conical waves B and C incident cones, 
and their reflections from the wing surface, reflected cones. If UJ (1, r, z, 0) is a Solution 
behind the incident cone written in the cylindrical coordinate system obtained from the initial 
.r, y. z coordinates, then the solution behind the reflected cone will be given by the formula 

Q, = @ (t, r, z, e) 7 Q, (t, r. z. n * 2p - 0) 

(the upper and lower signs correspond to cones B and C respectively). 
Let us put (@s, and %1 are the complete solutions behind the cones B and C) 

@B, (1. r. Z, 27; 2p--cl)=1 L @Bo. @Cl (t. r. 2. ,t - ?fi -6) = 1 i; @&, 

The solution inside the cone W is also found using the method given in /3/. Using 
integral (2.2) we obtain 

where t,,. 1' are the same as in (2.1,. 
It should be noted that the reflected cones and the cone W lie inside the intersection 

of the cones i?. C and X. Therefore the complete solution in these regions is 

dJ = a'& - Q)B - d,c - (D.y - 1 (lr‘s'n'l-') 

0 = a,,-, + @a 2 a,- -- d1.y - 1 (11 SRI‘) 

Q, = m,n I OK (11'I.'R'Rl‘) . 

Having found the solutions in all reci ons _ adjacent to the sphere, we obtain the solution 
inside the sphere from (1.2). Here, thanks tc the condition $0) ‘~T?c = il, the boundary conditions 
on the sphere readjust themss;ves on the win9 surface so th- at the symmetry about the planes 
8 7 fi. fi= n - fi (wing planes; is maintained. The integration is carried o.ut over the region 

'p__' [I ., 2 
2 

-.'/?I. il '0 '2; T=Zr!-4p. 

The solution obtained serves tc descr;bt the flow on the top side of the wing. A sclution 
for the bottc- side is sought as follows: the relation a+ -t- a_ = 2 holds in regions not 
adjacent to the wing edge (here d)_ and (II_ are the solutions on the top and bottom side of 

the wing). In the regions of diffraction on the wing edge the solution is found in the same 
manner as in the corresponding regions on the top side of the wing, but the period of the 
solution in 6 will be 7' : 2rr A 'I$ and i.= n !(rr - 2p)will be replaced by Xl = X/(X - ?fi). 
The same period (and the same j.1) will appear in formula (1.2) inthe course of computing the 
solution inside the diffraction sphere on the bottom side of the wing. 
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THE CAUCHY PROBLEM FOR A QUASILINEAR SYSTEM 
WHEN THERE ARE CHARACTERISTIC POINTS ON THE INITIAL SURFACE* 

V.A. KULIKOVSKII 

The problem of the existence, uniqueness and analyticity of a solution 
of the Cauchy problem in complex and real spaces for a quasilinear 
analytical set of equations are examined, when the initial data are 
specified on an analytical surface containing characteristic points, 
and an error occurs in the initial data and set of equations. In 
particular, the Cauchy problem with initial data on the envelope of 
one of the families of the characteristic surfaces of the system is 
examined. 

Discontinuities, whose trajectories are envelopes of the character- 
istic surfaces, are encountered when studying Chapman-Zhug detonation 
waves in gas dynamics /l-3/and magneto-hydrodynamics /4, 5/, and also 
in the theory of avalanches /6/. The construction of solutions around 
envelopes of the characteristic surfaces is interesting both in connection 
with the new problems of detonation in gases - taking into account the 
inhomogeneity of the background, intakes of mass, momentum and energy 
to the gas and distortion of the wave front - and in connection with other 
models. 

Investigations of similar‘ problems have so far been confined to 
linear systems i7-12/, whose knowledge of the order of contact of the 
characteristic surfaces and initial manifold was substantially used. 

1. Consider the set of first-order quasilinear equations in them-dimensional complex 
space rl. . . . . rrn whose coefficients and right-hand side s are complex functions analytic in 
the variables xi. . ., r,,,, ~1. . . ., II, 

Suppose the analytical initial values of the unknown functions are given on the analytical 
surface S of complex codimensionality 1, such that the surface S is an envelope of one of the 
families of the characteristic surfaces of (1.1). We can assume, without loss of generality, 
that U, ji = (I(! = 1.. . . . n) and in some domain D the surface S is specified by the relation 
21 = 0. The well-known conditions of non-solvability (1.1) relative to bui!& (i = I. . . . . 12): 
rank {Uijl) = n - 1, rank {Uijl 1 bi) = n held ox the surface S:rr = 0. The latter condition can 
be written in t'ne form 

bl al?, 0131 . . altJ 

b2 az21 acal . . at,,1 
10. (1.2) 

Hence it follows that there is nc classical solution to the Cauchy problem with initial 
data on the envelope of characteristic surfaces. 

We shall investigate the problem of the existence of the continuous functions u, (i = 1. 
. ., n). which satisfy the initial conditions on S and (1.1) outside S. 
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